公務(wù)員期刊網(wǎng) 精選范文 溫州動車事故調(diào)查報告范文

溫州動車事故調(diào)查報告精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的溫州動車事故調(diào)查報告主題范文,僅供參考,歡迎閱讀并收藏。

溫州動車事故調(diào)查報告

第1篇:溫州動車事故調(diào)查報告范文

關(guān)鍵詞:氧化鋅避雷器、接觸網(wǎng)、相角差法

0 引 言

根據(jù)鐵路中長期發(fā)展規(guī)劃:“十一五”期間建成7000公里高速客運專線,到2020年左右,我國將建成線路長度約1.2萬km的高速鐵路,而“十一五”期間建成7000公里高速客運專線。按未來15年高速鐵路將建設(shè)2萬公里計算,將有約一萬公里高速鐵路區(qū)段處在多雷區(qū)、雷電活動特殊強烈地區(qū),而截至目前,雷電事件,已給鐵路客運系統(tǒng)造成多起安全故障[1]。

以“723”甬溫線事故為例,2011年7月23日19時30分左右,雷擊溫州南站沿線鐵路牽引供電接觸網(wǎng)或附近大地,通過大地的阻性耦合或空間感性耦合在信號電纜上產(chǎn)生浪涌電壓,在多次雷擊浪涌電壓和直流電流共同作用下,LKD2-T1型列控中心設(shè)備采集驅(qū)動單元采集電路電源回路中的保險管熔斷[2]。同時,雷擊也造成軌道電路與列控中心信號傳輸?shù)腃AN總線阻抗下降,導(dǎo)致5829AG軌道電路與列控中心之間出現(xiàn)通信故障,雷擊是造成此次事故的首要原因。

根據(jù)事故所在區(qū)域雷擊數(shù)據(jù)進行的統(tǒng)計分析[2],7月23日19時27分至19時34分,溫州南站至永嘉站、溫州南站至甌海站鐵路沿線走廊內(nèi)的雷電活動異常強烈,雷擊地閃次數(shù)超過340次,每次雷擊包含多次回擊過程,幅值超過100千安的雷擊共出現(xiàn)11次。

在高速鐵路發(fā)達的歐洲中部地區(qū)每100公里接觸網(wǎng)在1年時間內(nèi)才可能遭受1次雷擊[3]。基于這樣的雷擊概率數(shù)據(jù),德國采用的方法是在雷電較多的地段安裝避雷器,而在其它雷電較少的區(qū)段,一般不考慮安裝避雷器等防雷裝置。而與德國相比,日本的地理環(huán)境、氣象環(huán)境完全不同,因此對電氣化接觸網(wǎng)的保護措施也截然不同。日本根據(jù)雷擊頻度及線路重要程度,將防雷等級劃分為A、B、C三級區(qū)域。A級區(qū)域雷害嚴重且線路重要,全線接觸網(wǎng)都架設(shè)避雷線,同時在牽引變電所出口、接觸網(wǎng)隔離開關(guān)、電纜接頭連接處、架空避雷線接地線終端等重要部位設(shè)置避雷器;B級區(qū)域雷害較重且線路重要,對部分特別地段的接觸網(wǎng)架設(shè)避雷線,同時在與A級區(qū)域相同的重要位置安裝避雷器;對于C級區(qū)域,一般只在一些重要位置安置避雷器[3]。

對于雷電的形成來分析,我國很多地區(qū)(比如西南地區(qū)、東南沿海地區(qū))有類似于日本的地理和氣象環(huán)境,但鐵路接觸網(wǎng)的防雷保護卻沒有吸取日本高鐵的經(jīng)驗,反而機械地學(xué)習(xí)了德國經(jīng)驗,所以在高速鐵路剛發(fā)展的幾年內(nèi),不可避免的由于雷電影響而造成多起事故,給人們的生產(chǎn)、生活帶來了深刻的負面影響。

因此電氣化鐵路接觸網(wǎng)的防雷避雷形勢十分嚴峻,避雷器作為電力系統(tǒng)中常規(guī)的避雷防雷裝置,將會在鐵路接觸網(wǎng)系統(tǒng)中得到普遍的應(yīng)用,而其狀態(tài)性能的好壞也將直接關(guān)系到整個牽引系統(tǒng)防雷工作的成敗,因此對電氣化接觸網(wǎng)避雷器性能狀態(tài)監(jiān)測的研究勢在必行!

避雷器性能優(yōu)劣檢測原理與監(jiān)測方法仍然沿用電力系統(tǒng)中的常用的研究方法。但鐵路牽引系統(tǒng)與電力系統(tǒng)相比具有負荷移動、方式多變等特點,加之接觸網(wǎng)與電網(wǎng)不同的拓撲結(jié)構(gòu),導(dǎo)致對接觸網(wǎng)用避雷器進行狀態(tài)性能檢測的時候面臨諧波電流復(fù)雜、頻繁操作過電壓等諸多新的問題。

1 鐵路接觸網(wǎng)特性分析

本課題所針對的避雷器運行的背景環(huán)境是牽引供電系統(tǒng),它是指三相電力系統(tǒng)接受電能向單相交流電氣化鐵道行駛的列車輸送電能的電氣網(wǎng)絡(luò),主要構(gòu)成部分如圖1所示。牽引變電所控制及變換電能,轉(zhuǎn)換接觸網(wǎng)與電力系統(tǒng)之間的電壓,接觸網(wǎng)則負責(zé)向列車供給電能,我國干線電氣化鐵道的供電制式是工頻單相交流制,接觸網(wǎng)的額定電壓是25kv[4]。

圖1 牽引供電系統(tǒng)結(jié)構(gòu)圖

負荷的特殊性決定了接觸網(wǎng)的特征不同于一般三相輸配電網(wǎng)絡(luò),主要原因有以下幾點:

1、 電力機車是大功率單相負荷。

2、 電力機車是移動性負荷,由于電氣化鐵道線路的條件多變,機車在行進過程中阻力也不斷的變化,頻繁地在起動、加速、惰行、制動等工況之間轉(zhuǎn)換,機車負荷的劇烈波動容易造成接觸網(wǎng)電壓異常波動,容易帶來操作過電壓影響。

3、 電力機車是非線性負荷,我國大量采用的交直流型電力機車,主電路一般都為相控整流電路,網(wǎng)側(cè)電流含有較大諧波成分,且含所有奇數(shù)次諧波,包括3次及3的倍數(shù)次[4]。

本文主要針對接觸網(wǎng)用避雷器的工作條件及背景環(huán)境,其他的有關(guān)牽引供電系統(tǒng)及接觸網(wǎng)的內(nèi)容不作為研究的對象,而能夠給避雷器性能狀態(tài)帶來危害的諧波電流和電壓波動也是本文分析的重點之一。

1.1 接觸網(wǎng)諧波特性分析

在避雷器性能檢測過程中,阻性電流值因其能夠很好的反映避雷器的狀態(tài)性能常用來判斷避雷器性能優(yōu)劣的重要依據(jù)。但是在諧波污染嚴重的情況下,阻性電流中就含有較大分量的諧波含量[5],嚴重的影響了性能分析的精確性[6]。而在電氣化鐵路系統(tǒng)中,電力機車多采用PWM控制電路,容易給接觸網(wǎng)帶來嚴重的諧波污染[7],諧波在接觸網(wǎng)傳播的過程中,當(dāng)接觸網(wǎng)參數(shù)與機車匹配時會發(fā)生諧振和嚴重的諧波放大[8]。根據(jù)CRH2動車組的模型仿真分析[9],當(dāng)機車在運行工況之間切換時,對應(yīng)的輸出功率會發(fā)生變化,由于基波與各諧波電流的變化不同步,導(dǎo)致不同輸出功率下諧波電流含量的變化較大。由諧振引起的電壓畸變,會進一步使機車諧波電流增大,形成了一個類似于正反饋的相互激勵過程,導(dǎo)致接觸網(wǎng)形成諧振過電壓,燒損避雷器等設(shè)備 [10]。

因此,在避雷器性能監(jiān)測分析的過程中,諧波含量的檢測對避雷器工作狀態(tài)的分析具有重要的作用[11]。基于場強法的諧波檢測方法在筆者的論文[12]中已經(jīng)具體闡述實現(xiàn)并已成功運用到本系統(tǒng)中。

1.2接觸網(wǎng)電壓波動分析

電氣化鐵路牽引負荷表現(xiàn)為移動且運行工況切換頻繁的特點,是一種十分典型的日波動負荷,符合短時沖擊的特點。接觸網(wǎng)的電壓波動與線路條件、機車類型、運行工況、機車速度、牽引重量等因素有關(guān),且這些影響因素具有隨機的特點。根據(jù)數(shù)據(jù)統(tǒng)計,接觸網(wǎng)電壓波動范圍最大可達30%,同時電壓峰值最高達到460V,波峰系數(shù)達到1.92,電壓峰值的大范圍變化對設(shè)備的安全構(gòu)成了較大的隱患[13],這其中也包含避雷器。因此在對避雷器性能在線監(jiān)測的過程中,頻繁的操作過電壓將是一個值得深究的問題。

為此,在本系統(tǒng)中額外添加了避雷器運行過電壓監(jiān)測功能,設(shè)定運行過電壓的閾值,并記錄下運行過電壓的時間和次數(shù),有助于對避雷器性能狀態(tài)和故障原因的研究分析。

2 氧化鋅避雷器在線監(jiān)測系統(tǒng)的結(jié)構(gòu)設(shè)計

氧化鋅避雷器在線監(jiān)測系統(tǒng)主要由傳感器、監(jiān)測點裝置、數(shù)據(jù)采集節(jié)點及上位機數(shù)據(jù)管理平臺組成,其結(jié)構(gòu)設(shè)計如圖2所示,分別利用感應(yīng)式電壓傳感器和電流互感器采集避雷器運行的電壓信號和電流信號,每只避雷器有其固定的監(jiān)測點裝置,采集處理監(jiān)測到的狀態(tài)數(shù)據(jù);一只數(shù)據(jù)采集節(jié)點可以處理多個監(jiān)測點裝置的監(jiān)測數(shù)據(jù),利用RS485實現(xiàn)多個數(shù)據(jù)采集節(jié)點與上位機之間的數(shù)據(jù)通信。

主控PC向下位機數(shù)據(jù)采集節(jié)點發(fā)出索要數(shù)據(jù)的控制指令后,節(jié)點根據(jù)接收的指令要求再向監(jiān)測點裝置索要當(dāng)前的監(jiān)測數(shù)據(jù),監(jiān)測點裝置在收到指令后就按要求將監(jiān)測數(shù)據(jù)回傳給數(shù)據(jù)采集節(jié)點,節(jié)點確定收到監(jiān)測數(shù)據(jù)之后,再將這些數(shù)據(jù)有次序的回傳給主控PC,上下位機之間采用ModBus通信協(xié)議,并通過CRC校驗,以保證數(shù)據(jù)傳輸?shù)臏?zhǔn)確性。

圖2 避雷器在線監(jiān)測系統(tǒng)的結(jié)構(gòu)設(shè)計

2.1 監(jiān)測點電路結(jié)構(gòu)設(shè)計

避雷器性能在線監(jiān)測點主要完成避雷器運行電壓及泄漏電流的采集、計算及其信號處理和組網(wǎng)通信等功能。整體結(jié)構(gòu)由電流采集模塊、電壓采集模塊、90E36信號處理模塊,單片機控制模塊、電源模塊、RS485通信模塊、雷擊計數(shù)模塊及LCD顯示模塊組成,其結(jié)構(gòu)設(shè)計框圖如圖3所示。

圖 3 監(jiān)測點電路結(jié)構(gòu)設(shè)計框圖

2.2 RS485串行組網(wǎng)通信結(jié)構(gòu)設(shè)計

在數(shù)據(jù)通信、計算機網(wǎng)絡(luò)應(yīng)用中,RS485是一種常用的串口通信標(biāo)準(zhǔn),它是在RS232標(biāo)準(zhǔn)基礎(chǔ)上發(fā)展起來的一種平衡傳輸標(biāo)準(zhǔn),能夠克服RS232通信距離短,速度低等缺點,其最高傳輸速率達到10Mbit/s,最遠傳輸距離可達1200m;具備多點、雙向通信功能,即可允許同一條總線上連接多達32個數(shù)據(jù)節(jié)點,而且節(jié)點驅(qū)動能力強、沖突保護特性好。由于RS485標(biāo)準(zhǔn)對接口要求的特殊性,用戶亦可建立自己需要的通信協(xié)議。因此,本系統(tǒng)采用RS485標(biāo)準(zhǔn)組網(wǎng)通信,如圖4所示,其中N≤32。

圖4 RS485組網(wǎng)通信框圖

3 結(jié) 論

在高速鐵路剛發(fā)展的幾年內(nèi),就因雷電影響造成多起列車停車晚點事故,給人們的生產(chǎn)、生活帶來了深刻的負面影響,鐵路系統(tǒng)的防雷避雷研究已經(jīng)成為一個研究的熱點課題。傳統(tǒng)的避雷器的故障監(jiān)測研究只針對于電力系統(tǒng)的應(yīng)用背景,鐵路牽引系統(tǒng)具有負荷移動、運行方式多變而造成的諧波電流復(fù)雜、頻繁操作過電壓等特點,而諧波電流和操作過電壓都會嚴重的影響著避雷器性能狀態(tài)。因此針對接觸網(wǎng)系統(tǒng)的特殊性,本文提出了氧化鋅避雷器性能在線監(jiān)測的實現(xiàn)方法,并設(shè)計了在線監(jiān)測點的硬件裝置、數(shù)據(jù)采集節(jié)點及主控PC數(shù)據(jù)管理平臺。經(jīng)測試,本監(jiān)測系統(tǒng)具備對避雷器阻性泄漏電流和相位差值進行精確檢測,數(shù)據(jù)傳輸流暢,同時具有實時數(shù)據(jù)圖形化顯示,歷史數(shù)據(jù)查詢等功能。系統(tǒng)運行試驗驗證了理論分析和設(shè)計的正確性,為其它電氣設(shè)備實時監(jiān)測研究提供了重要的理論基礎(chǔ)和實際的指導(dǎo)意義。

參考文獻

[1]葉飆.為什么高鐵頻頻被雷倒?[N].南方都市報,2011,7,29.

[2]國務(wù)院“7?23”甬溫線特別重大鐵路交通事故調(diào)查組.“7?23”甬溫線特別重大鐵路交通事故調(diào)查報告[R]. 2011,12,25.

[3]范海江,羅建.鐵路客運專線接觸網(wǎng)防雷研究[J].鐵道工程學(xué)報.2008,8(8).

[4]吳命利.牽引供電系統(tǒng)電氣參數(shù)與數(shù)學(xué)模型研究[D].北京:北京交通大學(xué),2006.

[5]謝武超,賈濤.電網(wǎng)諧波對金屬氧化物避雷器阻性電流影響的分析[J]. 廣東電力,2007,20(4): 43-45.

[6]Tan Pee-Chin, Poh Chiang, Holmes D.G. Optimal impedance termination of 25-kV electrified railway systems for improved power quality[J]. IEEE Transactions on Power Delivery,2005,20(2): 1703-1710.

[7]Lei Guo, Qunzhan Li, Yinglei Xu. Study on harmonic resonance of Traction Line in Electrified High-speed traction System[C]. Sustainable Power Generation and Supply.2009,1-4.

[8]方雷.高速鐵路牽引供電系統(tǒng)數(shù)學(xué)建模及仿真[D].成都:西南交通大學(xué),2010.

[9]何正友,胡海濤,方雷等.高速鐵路牽引供電系統(tǒng)諧波及其傳輸特性研究[J].中國電機工程學(xué)報, 2011,31(6): 55-62.