公務(wù)員期刊網(wǎng) 精選范文 計算機視覺應(yīng)用范文

計算機視覺應(yīng)用精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的計算機視覺應(yīng)用主題范文,僅供參考,歡迎閱讀并收藏。

計算機視覺應(yīng)用

第1篇:計算機視覺應(yīng)用范文

隨著計算機技術(shù)以及圖像處理技術(shù)的快速發(fā)展,計算機視覺技術(shù)作為一種新興的技術(shù),其被廣泛應(yīng)用在軍事、醫(yī)學(xué)、工業(yè)以及農(nóng)業(yè)等領(lǐng)域[1]。一般而言,計算機及視覺技術(shù)應(yīng)用在農(nóng)業(yè)的生產(chǎn)前、生產(chǎn)中以及生產(chǎn)后等各個環(huán)節(jié),其主要就是鑒別植物種類,分級和檢測農(nóng)產(chǎn)品的品質(zhì)。計算機視覺相較于人類視覺而言,其具有更多的優(yōu)點,能夠有效提高農(nóng)業(yè)的生產(chǎn)率,實現(xiàn)農(nóng)業(yè)生產(chǎn)與管理的智能化和自動化,促進農(nóng)業(yè)的可持續(xù)發(fā)展。

一、計算機視覺技術(shù)概述

計算機視覺主要是指利用計算機來對圖像進行分析,從而控制某種動作或者獲取某描述景物的數(shù)據(jù),是人工智能與模式識別的重要領(lǐng)域。計算機視覺興起于20世紀70年代,其涉及的學(xué)科范圍較為廣泛,包括視覺學(xué)、CCD技術(shù)、自動化、人工智能、模式識別、數(shù)字圖像處理以及計算機等。就目前而言,計算機視覺技術(shù)主要以圖像處理技術(shù)為核心,是通過計算機視覺模擬人眼,并利用光譜對作物進行近距離拍攝,運用數(shù)字圖像處理以及人工智能等技術(shù),對圖像信息進行分析和研究。計算機視覺技術(shù)主要步驟包括采集圖像、分割圖像、預(yù)處理、特征提取、處理和分析提取的特征等[2]。

二、農(nóng)業(yè)機械中計算機視覺技術(shù)的應(yīng)用分析

一般而言,農(nóng)業(yè)機械中計算機視覺技術(shù)的應(yīng)用,主要表現(xiàn)在以下三個方面:一是田間作業(yè)機械中的應(yīng)用;二是農(nóng)產(chǎn)品加工機械中的應(yīng)用;三是農(nóng)產(chǎn)品分選機械中的應(yīng)用。

(一)田間作業(yè)機械中的應(yīng)用

在田間作業(yè)機械中,計算機視覺技術(shù)的應(yīng)用較晚。近年來,由于環(huán)境保護政策的提出,在農(nóng)田作業(yè)的播種、植保以及施肥機械中的應(yīng)用越來越廣泛。在田間作業(yè)的過程中應(yīng)用計算機視覺技術(shù)時,主要應(yīng)用在苗木嫁接、田間鋤草、農(nóng)藥噴灑、施肥以及播種等方面[3]。為了有效識別雜草,對除草劑進行精確噴灑,相關(guān)研究人員分析了美國中西部地區(qū)常見的大豆、玉米以及雜草二值圖像的形態(tài)學(xué)特征,發(fā)現(xiàn)植物長出后14~23天內(nèi)能夠有效區(qū)別雙子葉和單子葉的效果,準確率最高達到90%。在1998年開發(fā)出Detectspary除草劑噴灑器,其能夠有效識別雜草,在休耕季節(jié)時,其相較于播撒而言,能夠減少19%~60%的除草劑用量。在農(nóng)業(yè)生產(chǎn)中,農(nóng)藥的粗放式噴灑是污染嚴重,效率低下的環(huán)節(jié),為了有效改變這種現(xiàn)狀,Giler D.K.等研制出能夠精量噴霧成行作物的裝置。該系統(tǒng)主要是利用機器視覺導(dǎo)向系統(tǒng),使噴頭能夠與每行作物上方進行對準,并結(jié)合作物的寬度,對噴頭進行自動調(diào)節(jié),確保作物的寬度與霧滴分布寬度具有一致性,從而有效節(jié)省農(nóng)藥。一般而言,該系統(tǒng)能夠促使藥量減少66%,提高霧滴沉降效率和施藥效率,減少農(nóng)藥對環(huán)境產(chǎn)生的影響。

(二)農(nóng)產(chǎn)品加工機械中的應(yīng)用

隨著信息技術(shù)以及計算機技術(shù)的快速發(fā)展,計算機視覺技術(shù)被廣泛應(yīng)用在農(nóng)產(chǎn)品加工的自動化中。如Jia P等提出了圖像處理算法,該算法主要是以鲇魚水平方向與主軸的形心位置和夾角為依據(jù),檢測鲇魚的方位以及背鰭、腹鰭、頭、尾的位置,從而確定最佳的下刀位置。此外,我國的黃星奕等人在研究胚芽米的生產(chǎn)過程時,在不經(jīng)過染色的情況下,對胚芽米的顏色特性等進行分析,得出胚芽米顏色特征的參數(shù)為飽和度S。同時利用計算機視覺系統(tǒng),自動無損檢測胚芽精米的留胚率,其結(jié)果與人工評定的結(jié)果大體一致。

(三)農(nóng)產(chǎn)品分選機械中的應(yīng)用

在分級和鑒定農(nóng)產(chǎn)品的品質(zhì)時,可以利用計算機視覺技術(shù)對其進行無損檢測。一般計算機視覺技術(shù)不需對測定對象進行接觸,可以直接利用農(nóng)產(chǎn)品的表面圖像,分級和評估其質(zhì)量,其具有標準統(tǒng)一、識別率高一級效率高等優(yōu)勢。計算機視覺技術(shù)在檢測農(nóng)產(chǎn)品時,主要集中在谷物、蔬菜以及水果等方面。Chtioui Y等人提出了結(jié)合Rough sets理論,利用計算機視覺技術(shù)對蠶豆品質(zhì)的方法進行評價。該理論通過不同的離散方法對石頭、異類蠶豆、過小、破損以及合格等進行有效區(qū)分,并利用影色圖像,對其特征參數(shù)進行分類,最終分類的結(jié)果相比于統(tǒng)計分類結(jié)果,兩者具有較好的一致性。

第2篇:計算機視覺應(yīng)用范文

關(guān)鍵詞 視覺識別;opencv;嵌入式系統(tǒng);ARM;CMOS

中圖分類號TP39 文獻標識碼A 文章編號 1674-6708(2013)90-0224-02

1 概述

計算機識別系統(tǒng)一直計算機電子類研究的熱點,隨著各項技術(shù)的進步,這一工作的實現(xiàn)越來越容易,利用一些成熟的識別函數(shù),實現(xiàn)圖像的精確識別是本文的主要工作,在設(shè)計和實現(xiàn)過程中制作了一種小型的低功耗嵌入式設(shè)備來實現(xiàn)這一功能。本文通過開發(fā)一個圖像識別的嵌入式系統(tǒng),開發(fā)CMOS攝像頭的驅(qū)動程序,實現(xiàn)數(shù)據(jù)的高速采集,并利用ARM9處理作為中央處理器將采集的圖像信息分析加工成與人眼識別效果相當(dāng)?shù)膮?shù)。

2 系統(tǒng)設(shè)計與實現(xiàn)

2.1系統(tǒng)設(shè)計

本文應(yīng)用的OpenCV全稱是Open Source Computer Vision Library,是Intel公司支持的開源計算機視覺庫。它使用類c語言和cplus語言實現(xiàn)的,程序模塊化程度高,可以打包成函數(shù)或者函數(shù)庫,對圖像處理的函數(shù)接口都進行了簡單通用的封裝,能夠?qū)崿F(xiàn)基本的視覺識別并且算法通用。它的應(yīng)用領(lǐng)域有人機互動、物體識別、圖象分割、人臉識別、動作識別、運動跟蹤、機器人視覺[1]。

2.2硬件系統(tǒng)設(shè)計

計算機龐大的種類中,有一個系列被命名為“嵌入式”計算機,嵌入式與普通計算機最大的區(qū)別就是其專用性比較強,可以根據(jù)需求,自由的增減接口、設(shè)備等。通過對當(dāng)前嵌入式系統(tǒng)“生態(tài)環(huán)境”的對比,技術(shù)應(yīng)用比較廣泛,而且在工業(yè)和消費電子產(chǎn)品中具有大量的開發(fā)團隊和開源軟件系統(tǒng)支持的是ARM系列嵌入式系統(tǒng)。目前ARM系統(tǒng)的主要芯片從ARM7到最新的CORTEXA9都有相當(dāng)數(shù)量的產(chǎn)品,但從性價比和驅(qū)動數(shù)量來說,ARM9具有強大的優(yōu)勢,本系統(tǒng)就采用ARM9系列處理器中一款自帶CMOS攝像頭采集接口的芯片作為核心處理器。

在實際研發(fā)過程中,由于2.0雙排插針在試驗中不方便外界信號線和測試調(diào)試,通過進一步寬展其接口,我們設(shè)計與制作了一個接口擴展板。

2.3軟件實現(xiàn)

軟件部分采用linux2.6內(nèi)核,精簡化linux操作系統(tǒng),通過對不需要的內(nèi)部插件進行精簡,整個操作系統(tǒng),包括驅(qū)動程序在內(nèi)不超過60M字節(jié),而且運行速度可以保證,由于系統(tǒng)功能集中,文件系統(tǒng)和應(yīng)用程序運行資源需求固定,所以能夠長期穩(wěn)定運行,功耗也比較低,具有小型化,便攜性,低功耗的特點。為保證系統(tǒng)的穩(wěn)定和速度,采用了嵌入式驅(qū)動模式,將CMOS接口的驅(qū)動程序和內(nèi)核統(tǒng)一編譯,體積更小,運行更穩(wěn)定。

確定操作系統(tǒng)和平臺之后,在應(yīng)用程序開發(fā)過程中重點采用了opencv中一些庫函數(shù)。OpenCV具有眾多函數(shù)庫,OpenCV 擁有包括 500 多個C函數(shù)的跨平臺的中、高層 API。它不依賴于其它的外部庫――盡管也可以使用某些外部庫。

利用piggingny 算法做邊緣檢測,其函數(shù)為:

void cvpiggingny( const CvArr* catchimage, CvArr* edges, double threshold1,

double threshold2, int aperture_size=3 );

函數(shù)中catchimage為輸入圖像;edges為輸出的邊緣圖像;threshold1為第一個閾值 ;threshold2 為第二個閾值;aperture_size 為Sobel 算子內(nèi)核大小。

函數(shù) cvpiggingny 采用 PIGGINGNY 算法發(fā)現(xiàn)輸入圖像的邊緣而且在輸出圖像中標識這些邊緣。threshold1和threshold2 分別為大閾值和小閾值,在圖像邊界確定過程中,邊緣是否連接由最小的閾值來限定,而那些屬于圖像邊界則由大的閾值來控制[2]。

在進行邊界確定和繪制之前,有些涉及二值化的問題,可以用不同的顏色轉(zhuǎn)換方法實現(xiàn),比如用色彩空間轉(zhuǎn)換法。有一種轉(zhuǎn)換方法用到了Bayer 模式,這是一種廣泛應(yīng)用于 CCD 和 CMOS 攝像頭圖像數(shù)據(jù)處理的模式。它允許從一個單獨平面中得到彩色圖像,然后對初步處理的圖像進行結(jié)構(gòu)分析,利用二值化后對閾值的選擇進行測試并進行形狀的模糊識別。

得到訓(xùn)練成熟的分類器,就可以實際應(yīng)用與圖像識別。但輸入圖像識別區(qū)域必須與訓(xùn)練樣本具有相同的尺寸才能保證識別效果。分類器的值可以有兩個,一個為0,一個為1,0表示圖片的數(shù)據(jù)特征經(jīng)檢測不符合現(xiàn)在分類器的目標,1就是符合的意思。如果圖像采集的尺寸大小不同則可以分區(qū)域進行單獨處理。大圖片分多個區(qū)域,小圖片則置于正中心用白色背景補充整副圖像。為了提高適應(yīng)性,可以設(shè)計類別分支模塊有多個尺寸,根據(jù)目標物體大小進行自動選擇,試驗中發(fā)現(xiàn)類別分支模塊被設(shè)計為可以進行尺寸調(diào)節(jié)的類型后效果非常好,這比只改變待檢圖像的尺寸更好[4]。工作流程變成了多次掃描,第一次進行整體區(qū)域劃分,接下來進行單個區(qū)域分析并分級,然后對不同數(shù)據(jù)集進行分析,效果自然是好了,但這樣會增加識別時間[5]。

在不同的分類器中,算法和實現(xiàn)過程都有區(qū)別,形成了各式各樣特點的分類器。有的以檢測目標區(qū)域的大小和探測物體的形狀面積進行對比,只有當(dāng)面積達到一定的數(shù)據(jù)量才能進行相應(yīng)比例的檢測。比如可以設(shè)定這個比例是1:3的關(guān)系。就是當(dāng)檢測目標的區(qū)域內(nèi)有效的黑色邊框包含的面積和檢測數(shù)據(jù)采集區(qū)域的面積之比為1:3時,就屬于該比例系數(shù)規(guī)定的檢測算法,才可以用這一級別的分類器進行識別,這主要是為保證識別的準確性。

3 測試結(jié)果

3.1針對彩色笑臉的多臉譜識別

3.2真實頭像識別

4結(jié)論

OpenCV包含的程序和函數(shù)非常多,匯集了全球精英的智慧和勞動成果,同時又是開源代碼,可以讓更優(yōu)秀的人去更改和提高,如果能夠很好的加以利用,可大大提高工作效率。有些識別程序甚至不需要添加外部支持也可以直接編譯連接形成可執(zhí)行應(yīng)用程序。

對于這種開源系統(tǒng)的移植非常便捷,無論做專用的DSP還是嵌入式系統(tǒng)都有其開源的強大優(yōu)勢和通用的接口標準。而標準的API將簡化計算機視覺程序和解決方案的開發(fā),OpenCV致力于成為這樣的標準API[6]。OpenCV的程序開發(fā)中,對于自由使用也有一定的限制,但它只是限制性的表明你的應(yīng)用也要開源,如果要進行相應(yīng)的商業(yè)開發(fā)則需要進行版權(quán)說明,無論哪種情況都是免費的,不需要擔(dān)心專利等問題。它為Intel Integrated Performance Primitives (IPP) 提供了透明接口。在某些嵌入式系統(tǒng)上運行時,系統(tǒng)不會提示你加載某些程序,而是會利用其透明接口自動實現(xiàn)。

本文中圖像識別的復(fù)雜程度并不高,但是能夠完整實現(xiàn)小型嵌入式系統(tǒng)的圖像輪廓識別。對于目前無人駕駛汽車等領(lǐng)域有積極的應(yīng)用價值。隨著嵌入式系統(tǒng)的普及應(yīng)用,通過對開源視覺庫的進一步研究,將其移植到小型計算機系統(tǒng)中是可行的,為此本文首先確定硬件系統(tǒng)平臺,在此基礎(chǔ)上進行應(yīng)用軟件庫的開發(fā),使得運行精簡指令集的嵌入式系統(tǒng)也能夠具有與通用計算機一樣的圖像識別能力。

參考文獻

[1]聶偉樂,瞿建榮.基于OpenCV的運動目標光流算法仿真[J].應(yīng)用光學(xué),2008,29(6):8-67.

[2]呂學(xué)剛,于明,劉翠響.IPL和OpenCV在VC++環(huán)境下的應(yīng)用[J].微型電腦應(yīng)用,2003,19(1):33-35.

[3]何臻祥,陳波.基于三星S3c2440bootloader的研究[J].軟件開發(fā)與應(yīng)用,2008,27(6):92-94.

[4]張維承,王勇.原始套接字在嵌入式Internet通信協(xié)議中的應(yīng)用[J].計算機應(yīng)用研究,2002(19):29-30,74.

第3篇:計算機視覺應(yīng)用范文

電力系統(tǒng)自動化是電力系統(tǒng)的發(fā)展趨勢,隨著計算機技術(shù)的不斷成熟,應(yīng)用領(lǐng)域不斷拓展,在電力自動化系統(tǒng)中的信息輸入、輸出甚至是存儲和傳輸中都應(yīng)用了計算機技術(shù)。鑒于電力系統(tǒng)具有功能復(fù)雜,分布范圍廣,管理調(diào)度較為集中等特點,故基于計算機的視覺圖像技術(shù)在電力自動化系統(tǒng)中具有非常廣泛的應(yīng)用領(lǐng)域和應(yīng)用前景。如結(jié)合紅外成像技術(shù)對線路設(shè)備進行監(jiān)測、應(yīng)用遙感技術(shù)和工業(yè)電視技術(shù)分擔(dān)工作人員的工作壓力等。

如果能夠?qū)⒒趫D像識別和圖像處理的計算機視覺技術(shù)安全合理的應(yīng)用到電力系統(tǒng)中,可以對電力系統(tǒng)的智能監(jiān)控和處理。目前,已有部分應(yīng)用實例投入使用,如利用紅外圖像分析技術(shù)對電力設(shè)備進行簡單識別、結(jié)合傳感器等對火電廠煤粉鍋爐火焰燃燒狀態(tài)的判斷等。

二、計算機視覺技術(shù)在電力系統(tǒng)自動化中的應(yīng)用

計算機視覺技術(shù)是通過對采集到的數(shù)據(jù)圖像進行處理和分析來模擬和研究微觀或者宏觀層面視覺功能的技術(shù)。具體到電力系統(tǒng)自動化領(lǐng)域,計算機視覺技術(shù)主要被應(yīng)用在三個方面,分別為地區(qū)調(diào)度實時監(jiān)控、設(shè)備運行負荷控制和變電站自動化監(jiān)控和處理。其中,地區(qū)調(diào)度實時監(jiān)控中的計算機視覺技術(shù)功能與中心調(diào)度監(jiān)控系統(tǒng)相似,都是通過多臺計算機和圖像采集設(shè)備實現(xiàn)對電力設(shè)備運行的監(jiān)控和對電力的實時調(diào)度等。而設(shè)備運行負荷控制通常需要利用工頻或者聲頻參與控制,還無法完全脫離人的視覺參與實現(xiàn)自動控制。變電站自動化監(jiān)控和處理是變電站自動化發(fā)展的方向,該技術(shù)是利用計算機,通過對實時狀態(tài)進行視頻監(jiān)控和數(shù)據(jù)處理,以實現(xiàn)無人值守的自動化運行模式。

典型的應(yīng)用領(lǐng)域為下述幾個方面。

1.計算機視覺技術(shù)在在線監(jiān)測中的應(yīng)用。該應(yīng)用主要是利用計算機的紅外圖像識別技術(shù)對電力設(shè)備進行在線監(jiān)測實現(xiàn)的。電氣設(shè)備的表面溫度在一定程度上可以反映其運行的狀態(tài),利用圖像采集設(shè)備對電氣設(shè)備進行紅外成像拍攝,可以獲取設(shè)備溫度的實時動態(tài),在此基礎(chǔ)上對紅外圖像進行圖譜分析,并與正常運行時的參照標準進行比較,即可實現(xiàn)對電力設(shè)備的在線監(jiān)測。同時,若設(shè)備出現(xiàn)故障,利用紅外成像技術(shù)還能對故障位置進行定位,這就為及時進行檢修提供了強力的支持。

例如,斷路器觸頭接觸不良、輸電線路絕緣環(huán)境的變差、變壓器少油等故障都會造成局部設(shè)備過熱。若只采用傳統(tǒng)檢修方式,無法切實掌握設(shè)備運行狀態(tài),只能在故障發(fā)生后尋找故障部位,檢查確認后才能進行排除處理。計算機視覺技術(shù)的應(yīng)用,首先簡化了檢測方式,只需要將成像設(shè)備在有效范圍內(nèi)對電氣設(shè)備進行遠距離測量即可實現(xiàn);其次在監(jiān)測方面,一旦設(shè)備的監(jiān)測數(shù)據(jù)超出正常范圍的最大或最小閾值,即可認定該部位已經(jīng)發(fā)生故障,實現(xiàn)對故障的及時處理,由于定位更為準確,且減少了傳統(tǒng)的故障部位確認環(huán)節(jié),故提高了系統(tǒng)運行與監(jiān)測效率。

2.計算機視覺技術(shù)在無人值班變電站和電場環(huán)境監(jiān)控中的應(yīng)用。在無人值班變電站中,利用微波雙鑒探測器和計算機網(wǎng)絡(luò)等組成無人監(jiān)視系統(tǒng),通過該系統(tǒng)對變電站周邊環(huán)境進行視頻監(jiān)控,然后利用差分圖像、光流法等計算機視覺技術(shù)等對移動物體進行判斷和識別,確認移動物體屬性,若出現(xiàn)情況可以進行實時報警。實際應(yīng)用表明,在適當(dāng)天氣條件下,該系統(tǒng)的識別準確率保持在較高水平。若變電站周邊發(fā)生火情,還可以輔助紅外圖像識別對火勢進行判斷并報警。

3.計算機視覺技術(shù)在電力線路監(jiān)測中的應(yīng)用。隨著經(jīng)濟社會的發(fā)展,為滿足人們?nèi)找嬖鲩L的電力需求,必須進行大量的電力線路鋪設(shè),在鋪設(shè)過程中,通常需要穿越復(fù)雜的地理環(huán)境,這種情況為線路巡檢員的工作帶來了極大的困難,且巡檢效率不高、存在巡檢盲區(qū)等。此時,利用計算機視覺技術(shù)可以很好的解決該問題。對電力線路安裝監(jiān)測機器人,在機器人中安裝控制裝置,位置傳感器、測距傳感器和CCD視覺傳感器,線路檢測裝置,無線圖像傳輸設(shè)備等,通過機器人在線路中行走對線路進行溫度識別和分布判斷,進而完成線路的巡視工作。該方式可以減少惡劣環(huán)境對巡線工作帶來的操作難度,提高工作效率,增強故障判斷精度。

4.計算機視覺技術(shù)在位置判斷中的應(yīng)用。利用計算機視覺技術(shù)可以對電力系統(tǒng)中的開關(guān)刀閘位置和繼電保護壓板的位置進行監(jiān)測。開關(guān)刀閘具有三種狀態(tài),分別為閉合、斷開和異常。若開關(guān)刀閘位置不適當(dāng)會影響到系統(tǒng)的工作狀態(tài)。利用計算機視覺技術(shù)可以自動識別其工作狀態(tài),并對不正常狀態(tài)進行報警。繼電保護壓板會隨著電網(wǎng)或者變電站的運行方式的變化而變化。操作規(guī)范要求值班人員對壓板的位置進行確認和糾正。若壓板位置不正確會導(dǎo)致繼電保護出現(xiàn)錯誤動作甚至引發(fā)事故。在壓板監(jiān)測方面,由于壓板電信息不明辨,傳統(tǒng)檢測方式不易對其進行檢測,若采用計算機視覺技術(shù),利用成像技術(shù)對壓板盤面進行圖像采集,然后通過圖像識別技術(shù)對獨享進行識別,即可實現(xiàn)對壓板位置的判斷。

第4篇:計算機視覺應(yīng)用范文

關(guān)鍵詞:計算機自動化 視覺檢測 制造業(yè)

中圖分類號:TP274.4 文獻標識碼:A 文章編號:1007-9416(2014)05-0014-01

在精密測試技術(shù)領(lǐng)域,自動化視覺技術(shù)具有最大的發(fā)展?jié)摿?,它將電子學(xué)、圖像處理、光學(xué)探測和計算機自動化技術(shù)綜合起來進行運用,在工業(yè)檢測中引入機器視覺,能夠快速測量物品平面或三維位置尺寸,其主要特點有:柔性好、速度快和非接觸性,在現(xiàn)代制造業(yè)中有著非常廣闊的應(yīng)用前景。

目前,國內(nèi)視覺檢測領(lǐng)域所需要的視覺檢測設(shè)備大多是進口的,國內(nèi)生產(chǎn)的設(shè)備缺乏較高的檢驗精度和較強的實時性;但是進口設(shè)備大大增加了檢測成本,不少中小企業(yè)無力承擔(dān)。面對國內(nèi)檢測需求日益增加的情況,積極進行成本較低,精度較高的檢測設(shè)備的開發(fā),成為一個亟需解決的問題,需要引起重視。

1 檢測系統(tǒng)的工作原理

自動化視覺檢測系統(tǒng)工作流程分為三個部分,分別是圖像信息獲取、圖像信息處理以及機電系統(tǒng)執(zhí)行檢測結(jié)果。如果系統(tǒng)有需求,能夠借助人機界面對參數(shù)進行實時的設(shè)置與調(diào)整。當(dāng)被檢測對象移動到特定的位置時,位置傳感器就會發(fā)現(xiàn)它,會將探測到被檢測物體的電脈沖信號發(fā)送給PLC控制器,經(jīng)過計算,PLC控制器將物體移動到CCD相機采集位置的時間的出來,然后將觸發(fā)信號準確的發(fā)送給圖像采集卡,采集卡檢測到此信號后,會要求CCD相機立即進行圖像采集。被采集到的物體圖像會以BMP文件的形式發(fā)送到工控機,運用專門的分析工具軟件分析處理圖像,分析檢測對象是否與設(shè)計要求相符合,執(zhí)行機會依據(jù)合格或者不合格的信號對被檢測物體進行相應(yīng)處理。經(jīng)過這樣的反復(fù)的工作,系統(tǒng)對被檢測物體進行隊列連續(xù)處理。如(圖1)。

2 自動化視覺檢測系統(tǒng)的組成

在工業(yè)檢測領(lǐng)域,計算機自動化檢測系統(tǒng)可以在尺寸測量、工件定位、特征檢測、圖形圖像以及字符識別等方面進行運用。自動化視覺檢測系統(tǒng)按照功能模塊可以劃分為,圖像信息獲取模塊、圖像信息處理模塊、人機交互模塊、機電執(zhí)行模塊以及系統(tǒng)控制模塊五部分。其中處于核心位置的是系統(tǒng)控制模塊,系統(tǒng)控制不論是在被檢測物置信息的觸發(fā),還是機電執(zhí)行模塊所需檢測結(jié)果信息的獲取等等各個方面,都必須參與其中,否則無法完成;而人際交互模塊更是與核心模塊有著之間聯(lián)系,通過與其直接通信,以便實時更新檢測系統(tǒng)參數(shù)以及執(zhí)行指令等。

3 自動化視覺檢測技術(shù)在制造業(yè)上的應(yīng)用

3.1 應(yīng)用于汽車車身檢測的視覺檢測技術(shù)

現(xiàn)代汽車制造業(yè)的生產(chǎn)周期日益縮短,生產(chǎn)日益集團化,原材料和零部件供應(yīng)呈現(xiàn)大宗化,而這正是給運用自動化視覺檢測技術(shù)提供了客觀環(huán)境。該系統(tǒng)包括三維視覺傳感器系統(tǒng)、電器控制與接口系統(tǒng)、機械及定位系統(tǒng)、標定系統(tǒng)以及計算機自動化等部分,其測量步驟如下:首先在電氣控制系統(tǒng)下初步定位運送車身;然后借助專門的控制系統(tǒng)準確定位待測位置;借著用計算機自動化進行檢查點圖像的采集與處理;最后,將被監(jiān)測點的坐標參數(shù)計算出來。檢測系統(tǒng)應(yīng)該能夠?qū)崟r控制單光條、多光條、雙目立體視覺以及十字叉絲等傳感器的動作;按照要求順序,全部視覺傳感器進行測量,然后轉(zhuǎn)換測量結(jié)果,將其放置于測量坐標中;經(jīng)過自動識別,能夠地裝配結(jié)果進行判斷。這一視覺檢測方法具有非得用地、效率高、自動化、精度好的特點,能夠很好的滿足汽車工作的需求。

3.2 為智能焊接的實現(xiàn)解決核心難題

在焊接領(lǐng)域,對智能焊接機器人的研究已經(jīng)成為關(guān)注的重點,智能焊接機器人要求能夠識別環(huán)境目標,對焊接參數(shù)進行調(diào)整,并實時精確跟蹤軌跡。比如在潛艇、大型輪船的制造中,焊接是十分重要的環(huán)節(jié),焊接質(zhì)量直接關(guān)系到后續(xù)的制造環(huán)節(jié)以及潛艇、輪船的強度和安全性。智能焊接機器人在紅外攝像儀、高速攝像機以及CCD攝像機等高精度圖像傳感設(shè)備的輔助下,采用智能化圖像處理方法能夠進行圖像焊接,檢測焊接空間位置,規(guī)劃焊炬姿態(tài),對焊接熔池特征參數(shù)進行實時提取,對焊接組織、機構(gòu)和性能進行預(yù)測等,能夠在很多人類難以進行作業(yè)的場合完成焊接工作,在焊接過程中,通過數(shù)個光電接收陣列對檢測組建進行多維視覺傳感,并綜合處理所獲取的信息。目前國外KUKA,Motoman,GMF,Adept等廠家已經(jīng)開發(fā)出智能焊接機器人,其裝配了自動化視覺檢測功能,并且已經(jīng)廣泛應(yīng)用于潛艇與航天器的生產(chǎn)中。

3.3 提高手機生產(chǎn)檢測速度

隨著手機設(shè)計精密程度的日益提高,人工檢驗已經(jīng)難以適應(yīng)大規(guī)模生產(chǎn),這是因為其需要的測量投影儀較多,檢測速度慢。而采用自動化視覺檢測系統(tǒng)能夠自動檢測電路板組建中的連接器以及內(nèi)部零件等,檢測速度快、測量結(jié)果準確,具有較強的擴展性和較高的性價比。檢測系統(tǒng)主要就是測量計算機自動化接口電路板組件中各個連接器特定位置的幾何尺寸,這里面包括連接器內(nèi)部零件的尺寸、間距以及連機器與PCB底板的相對位置;另外還要對連接器與標準是否相符以及內(nèi)部零件被損壞與否。系統(tǒng)可以將質(zhì)量檢驗的效率大大提升,而且也能夠使產(chǎn)品質(zhì)量得到保障,實現(xiàn)降低檢驗成本的目的。

4 結(jié)語

作為一種新興的檢測技術(shù),自動化視覺檢測技術(shù)對我國自動化視覺檢測產(chǎn)品的發(fā)展起到了很大的推動作用,使其不斷向更高層次邁進,同時也為我國制造業(yè)的發(fā)展做出了貢獻,具有廣闊的發(fā)展前景。

參考文獻

[1]伍健.基于PDE和全變分濾波方法的研究及在多種噪聲中的應(yīng)用[D].天津大學(xué),2012.

第5篇:計算機視覺應(yīng)用范文

 

數(shù)據(jù)挖掘就是從大量的不完全的有噪聲的模糊的隨機的實際應(yīng)用數(shù)據(jù)中,抽取隱含在其中的、事先并不知道的、但又是潛在有用的信息和知識的過程。

 

決策樹算法作為常用的數(shù)據(jù)挖掘技術(shù)之一,其基本思想是將實例庫中記錄的大量有限的具體事實數(shù)據(jù)進行歸納和分類并建立樹型結(jié)構(gòu),以發(fā)現(xiàn)并形成隱含在大量實例中的若干形式化的分類判別規(guī)則,典型的決策樹算法方法有ID3方法和IBLE(Information—based Learning from Example)方法。

 

利用決策樹評估教材質(zhì)量的基本思想

 

筆者以高校教學(xué)質(zhì)量建設(shè)中的重頭戲——教材建設(shè)為例來闡釋決策樹算法在教育統(tǒng)計學(xué)中的應(yīng)用。

 

從教材的教學(xué)水平,科學(xué)水平等兩大要素來對教材的質(zhì)量進行合理分類,探索出科學(xué)合理的決策樹的模型,使之成為學(xué)校教材建設(shè)管理的理論方法,并在今后的教材管理中起著一定的指導(dǎo)作用。

 

教學(xué)水平:教材符合人才培養(yǎng)目標及本課程教學(xué)的要求:取材合適、深度適宜、份量恰當(dāng);符合認知規(guī)律;富有啟發(fā)性;便于學(xué)習(xí)。

 

科學(xué)水平:能反映本學(xué)科國內(nèi)外科學(xué)研究和教學(xué)研究的先進成果;能完整地表達本課程應(yīng)包含的知識;反映其相互聯(lián)系及發(fā)展規(guī)律;結(jié)構(gòu)嚴謹。

 

構(gòu)建決策樹模型

 

即利用訓(xùn)練集(教材建設(shè)數(shù)據(jù)庫)建立并精化一棵決策樹。該過程可分為建樹和剪枝兩階段。其中,建樹是用每一個屬性將訓(xùn)練集劃分成一個或多個子集,遞歸地調(diào)用該過程,直到每個子集中的記錄都屬于同一類,最終得到?jīng)Q策樹。剪枝是為提高樹的精度及分類效率,而去掉因訓(xùn)練數(shù)據(jù)中的噪聲和孤立點等引起的不可靠或可能是噪聲的一些枝條。

 

利用決策樹研究影響教材質(zhì)量的因素

 

首先,將學(xué)生問卷調(diào)查數(shù)據(jù)庫和教學(xué)管理部門所掌握的資料結(jié)合起來,分類整理,同時進行規(guī)范化的數(shù)據(jù)清洗,得到創(chuàng)建決策樹模型的訓(xùn)練集,如表1所示。

 

根據(jù)評估預(yù)期的要求,將所有教材的評估結(jié)果分為兩類:

 

Class p:綜合評價=“優(yōu)秀”

 

Class n:綜合評價=“一般”

 

從上表顯示的數(shù)據(jù)可知,綜合評價為“一般”的教材有9種, 綜合評價為“優(yōu)秀”的教材有6種,從而可以計算出樣本分類的期望信息:

 

—∑Pi log2(pi)=

 

I(p,n)=I(9,6)= —[(9/15)×log2(9/15)+6/15×log2=(6/15)]

 

=—(—0.444—0.53)=0.974

 

下面以綜合評價是否為“優(yōu)秀”作為衡量標準分別計算由各個屬性劃分子集的信息熵,以及各自的信息增益度。

 

計算“教學(xué)水平”的信息增加益度

 

從而算出信息熵E(教學(xué)水平)=

 

I(3,1)+I(3,2)+I(0,3)+I(0,3)=0.43

 

再計算出其信息增益度

 

GainI(p,n)—E(教學(xué)水平)=0.974—0.507=0.467

 

計算“科學(xué)水平”的信息增益度

 

計算信息熵E(科學(xué)水平)=I(2,1)+I(3,2)+I(1,6)+I(0,0)—0.783再計算出其信息增益度GainI(科學(xué)水平)=I(p,n)—E(科學(xué)水平)=0.974—0.783=0.191

 

計算“教材編者職稱”的信息增益度

 

從而算出信息熵E(教材編者職稱)=I(4,1)+I(2,1)+I(0,4)+I(0,3)=0.424再計算出其信息增益度GainI(教材編者職稱)—I(p,n)—E(教材編者職稱)=0.974—0.424=0.55

 

計算“教材編者學(xué)歷”的信息增益度

 

計算信息熵E(教材編者學(xué)歷)=I(3,1)+I(3,3)+I(0,5)=0.667再計算出其信息增益度GainI(教材編者學(xué)歷)=(p,n)—(教材編者學(xué)歷)=0.974—0.667=0.307

 

由此可以得知“教材編者職稱”的信息增益度最大,它是最能區(qū)別訓(xùn)練集實例中教材質(zhì)量的屬性,應(yīng)作為決策樹的根節(jié)點。根據(jù)各個屬性的信息增益度的大小,可以構(gòu)建該訓(xùn)練集實例的決策樹如下圖1所示:

 

由該決策樹可以得出諸如以下結(jié)論:

第6篇:計算機視覺應(yīng)用范文

關(guān)鍵詞:會計電算化 應(yīng)用問題 解決對策

隨著電子信息產(chǎn)業(yè)的飛速發(fā)展,會計電算化在各行各業(yè)得到廣泛運用,但是由于在各行業(yè)受到各種條件的限制,導(dǎo)致會計電算化的應(yīng)用水平參差不齊,從而影響了會計電算化在實踐中向更深層次的發(fā)展,也使會計電算化的功能發(fā)揮大打折扣。希望通過本文的論述,能夠提高公路施工企業(yè)會計的認識,加快會計電算化在本行業(yè)的發(fā)展。并希望能對廣大會計及管理工作者提供一點點幫助,讓會計電算化在公路施工行業(yè)效果有一定的改觀。

一、目前本行業(yè)中會計電算化的應(yīng)用問題及分析

(一)思想認識問題

隨著我國綜合國力的提高,社會主義經(jīng)濟突飛猛進的發(fā)展,各行業(yè)的現(xiàn)代化水平不斷改善,目前會計電算化在我國迅速推廣,但是人們對電算化的認識還不足,多數(shù)單位電算化都是應(yīng)用于代替手工核算,僅僅是從減輕會計人員負擔(dān)、提高核算效率方面入手,根本沒認識到建立完整的會計信息系統(tǒng)對企業(yè)的重要性,使現(xiàn)有會計提供的信息不能及時、有效地為企業(yè)決策及管理服務(wù)。同時,在軟件更新及硬件投入等方面支持力度不夠,根本沒能利用信息技術(shù)優(yōu)勢來提高企業(yè)運作效率。例如:在山西有一公路施工企業(yè)的下屬分公司,由于長期野外作業(yè),信息比較封閉,項目經(jīng)理思想較為傳統(tǒng),不注重員工的培訓(xùn)學(xué)習(xí),知識的更新意識不強,甚至反對員工后續(xù)教育,認為員工的培訓(xùn)學(xué)習(xí)會耽誤施工時間,沒有知識照樣能修路。就這樣,當(dāng)上級要求全面推行會計電算化的時候,該分公司很多人不能理解,認為原始的手工記賬就很好,有的財務(wù)人員思想意識落后,不但不認為這是財務(wù)核算的一個進步,而是找各種理由排斥電算化的推行。在電算化勉強施行以后,其它部門不予配合,造成財務(wù)部門工作量大大增加,處于電算化與傳統(tǒng)記賬的兩難當(dāng)中,從這個例子可以看出,解決人們對電算化的思想認識問題是非常關(guān)鍵的,而且電算化的推行不僅僅是財務(wù)部門的事情,不僅要得到領(lǐng)導(dǎo)的支持,還要各部門各崗位人員的密切配合。

我國電算化事業(yè)起步較晚,人們還未充分認識到電算化的意義及重要性。并且我國現(xiàn)在大多數(shù)企事業(yè)單位的領(lǐng)導(dǎo)都是六、七十年代的人,其中部分領(lǐng)導(dǎo)受教育水平比較低,思想意識比較傳統(tǒng),而且傳統(tǒng)的經(jīng)營模式在他們的思想意識中已經(jīng)根深蒂固。任何改革對他們都是考驗。會計電算化的推行是一個長期復(fù)雜的過程,但是經(jīng)過大量的事實表明會計電算化的推行具有可行性,會計電算化不僅改變了會計核算方式及數(shù)據(jù)處理程序和方法,擴大了會計數(shù)據(jù)領(lǐng)域,提高了會計信息質(zhì)量,而且改變了會計內(nèi)部控制與審計的方法和技術(shù),因而推動了會計理論與會計技術(shù)的進一步發(fā)展,促進了會計管理制度的改革。所以,會計電算化決不僅僅是核算工具和核算方法的改進,而是會引起會計工作組織和人員分工的改變,促進會計工作效率和質(zhì)量的全面提高。

(二)公路施工企業(yè)會計電算化實行后,受到人力資源的限制,電算化程度和發(fā)展前景受到制約

公路施工企業(yè)由于受到其行業(yè)自身特殊性的影響,長期野外作業(yè),條件艱苦,信息相對封閉,人才的引進也較為困難,任何一項技術(shù)的更新對人才的要求都相對較高,因而就產(chǎn)生人力資源與技術(shù)發(fā)展之間的矛盾。不少公路施工企業(yè)在手工核算轉(zhuǎn)向電算化的過渡中,各相關(guān)崗位人員基本不變,每個人對新模式的接受程度參差不齊,再加上人才的缺乏,施工企業(yè)通常在材料機械核算崗位臨時使用沒有會計基礎(chǔ)的人員,只經(jīng)過簡單的培訓(xùn),對核算工作沒有深層次的認識,導(dǎo)致會計核算工作十分被動,會計電算化的推行和應(yīng)用受到很大的制約。

(三)會計電算化實行后,對傳統(tǒng)的模式?jīng)]有徹底的改造,對新的管理模式?jīng)]有全面的規(guī)劃

手工核算模式下,長期以來已形成一套系統(tǒng)的管理方式,但由于手工效率低下,限制了會計核算過程中的一些環(huán)節(jié)。手工模式下由于工作效率的關(guān)系,可能會用多人分工記賬,各負其責(zé),實行電算化后,如果不對人員進行必要的調(diào)整,就造成人力資源的浪費。手工模式下的一些工作流程和會計電算化也存在差異,導(dǎo)致傳統(tǒng)模式和電算化核算程序上無法兼容,不能合理接軌,工作效率必將受到影響。要想對新模式的合理調(diào)整規(guī)劃,必須對整個企業(yè)的管理有個全面的分析和探討,從人力、物力全方位進行合理的配置。否則,電算化的意義就大打折扣。

(四)電算化實行后,財務(wù)管理功能沒有得到很好的發(fā)揮

會計電算化是會計史上的一項技術(shù)革命,很大程度上減輕了會計人員的工作量。在手工模式下,由于繁重的記賬、報賬工作使財務(wù)人員的工作重點主要放在了核算上,沒有太多的精力去搞財務(wù)預(yù)算和財務(wù)管理工作,使財務(wù)工作僅局限于事后核算。

電算化的實行,使財務(wù)人員從繁瑣的手工核算中解放出來,但是目前很多財務(wù)軟件在會計核算方面的功能較強,而對財務(wù)管理、財務(wù)指標分析、資金供求預(yù)測等功能方面較為薄弱,限制了財務(wù)管理功能的有效發(fā)揮。

公路施工企業(yè)的財務(wù)管理重點是項目成本控制,因而項目成本預(yù)算、經(jīng)營過程控制、項目利潤預(yù)測都顯的尤為重要,如果僅限于項目核算而不能很好地發(fā)揮財務(wù)管理功能,那施工項目的經(jīng)營過程就非常盲目。

(五)目前公路施工企業(yè)會計電算化網(wǎng)絡(luò)化進程緩慢,信息資源不能得到充分利用

由于公路施工企業(yè)中項目經(jīng)營有自身的弊病,項目經(jīng)營期限較短,流動性較大,受到項目所在地網(wǎng)絡(luò)資源限制,大多項目會計電算化長期使用較陳舊的單機版軟件,而且同一企業(yè)中的不同項目所用軟件不同,導(dǎo)致同一公司財務(wù)信息的共享和傳遞不能順利進行,從而導(dǎo)致總公司對分公司及工程項目不能進行及時、有效的監(jiān)管和控制,也影響了會計核算和財務(wù)管理的效率。

二、針對以上幾個問題提出以下對策

(一)加強理論學(xué)習(xí),提高思想認識

理論是行動的先導(dǎo),電算化會計理論研究是會計電算化高速發(fā)展的基礎(chǔ),會計電算化關(guān)系著整個企業(yè)的各個方面,必須引起領(lǐng)導(dǎo)的重視,在學(xué)習(xí)中提高各部門各環(huán)節(jié)的理論水平,組織和協(xié)調(diào)好內(nèi)部管理機制,讓會計電算化理論有效地運用到企業(yè)的管理中,使會計電算化的優(yōu)越性得到充分體現(xiàn),讓大家都認識到新技術(shù)帶來的進步。加強理論學(xué)習(xí)的重點是要建設(shè)一支業(yè)務(wù)熟練,技術(shù)過硬的會計隊伍,通過學(xué)習(xí)讓會計人員對自已的工作有一個本質(zhì)的認識。由于我們公路企業(yè)的電算化管理方面整體理論基礎(chǔ)欠缺,只有領(lǐng)導(dǎo)親自抓,才能統(tǒng)籌規(guī)劃,周密部署,確保會計電算化的有效實施, 會計電算化才可能健康、有序地發(fā)展。

(二)引進和培養(yǎng)管理型人才,搞好新模式下的整體規(guī)劃和調(diào)整

目前高新技術(shù)的發(fā)展日新月異,為了適順應(yīng)市場經(jīng)濟的要求,結(jié)合公路施工企業(yè)的具體情況,必須引進和重點培養(yǎng)業(yè)務(wù)精、能力強的人才,全面負責(zé)會計信息系統(tǒng)的整體規(guī)劃和調(diào)整,統(tǒng)籌新形勢下會計電算化與內(nèi)部各個環(huán)節(jié)的協(xié)調(diào),使會計核算的效率和水平得到不斷提高,從而使會計電算化在公路建設(shè)中發(fā)揮出空前的作用。

(三)改善和提高軟件功能,加快網(wǎng)絡(luò)化步伐,使會計電算化向管理型方面邁進

為更好更快地促使本行業(yè)的發(fā)展,我們要合理選用適合本行業(yè)的軟件,必要時可以對軟件進行二次開發(fā)。在有限的施工環(huán)境下,加大投入,盡全力保證網(wǎng)絡(luò)化進程,充分發(fā)揮會計電算化的優(yōu)勢。目前會計電算化軟件已相當(dāng)成熟,網(wǎng)絡(luò)版軟件已廣泛應(yīng)用于會計核算和財務(wù)管理工作中,會計核算的網(wǎng)絡(luò)化不僅建立了資源共享的平臺,也給會計信息的調(diào)用、查詢提供了方便。我們財務(wù)人員在日常工作中,要充分利用先進的網(wǎng)絡(luò)資源,加強學(xué)習(xí),在準確核算的基礎(chǔ)上,更深層次地應(yīng)用電算化搞好財務(wù)數(shù)據(jù)的預(yù)測分析工作,為管理者的決策提供及時有效的依據(jù),為企業(yè)的發(fā)展提供科學(xué)的保障。

參考文獻:

[1]李守明,靳蘭春.我國電算化會計與電算化審計的比較分析[J].財會月刊(會計),2001,(4)

[2]羅輔維.對開展計算機審計的認識[J].中國內(nèi)部審計,2002

第7篇:計算機視覺應(yīng)用范文

【關(guān)鍵詞】計算機 視覺 圖像處理 技術(shù)

一、引言

隨著計算機技術(shù)的不斷發(fā)展,在20世紀60年底產(chǎn)生了計算機視覺學(xué)這一學(xué)科。計算機視覺是借助計算機以及各種設(shè)備,進行生物視覺模擬的一種技術(shù)。計算機視覺學(xué)的主要任務(wù),是借助已掌握的圖片、視頻等資料,進行計算與處理,和人類及其他生物的視覺過程一樣,

得到相應(yīng)形式的三維數(shù)據(jù)信息。計算機視覺學(xué)的發(fā)展,在工業(yè)、農(nóng)業(yè)的生產(chǎn)中,地質(zhì)勘探、天文、醫(yī)學(xué)觀察等領(lǐng)域也有著重要的應(yīng)用價值。因此,視覺學(xué)的研究和應(yīng)用轉(zhuǎn)化受到了越來越多的重視。

二、計算機視覺學(xué)的圖像分割研究

(一)數(shù)據(jù)驅(qū)動的分割研究

在計算機視覺學(xué)應(yīng)用過程中,經(jīng)常進行的數(shù)據(jù)驅(qū)動分割有下面幾項內(nèi)容:第一種是邊緣檢測的分割、第二種是區(qū)域分割、第三種是邊緣和區(qū)域相互結(jié)合的分割。第一種基于邊緣檢測的分割,這種分割的基本方法:首先對檢測圖像的邊緣點進行檢測,然后根據(jù)一定的法則進行輪廓的連接,獲得分割的區(qū)域?;谶吘墮z測的分割其難點是邊緣檢測時如何處理好抗噪聲性能、檢測的精度之間的矛盾。所以,在研究的過程中,提出了多種多尺度邊緣檢測的方法,按照實際問題進行多尺度邊緣信息設(shè)計等方案,以獲得更為合適的抗噪性能和檢測的精度。第二種基于區(qū)域的分割,它的基本思想是按照圖像數(shù)據(jù)的特點,將整個圖像的空間劃分成為幾個不同的區(qū)域進行圖像處理。

(二)計算機視覺學(xué)模型驅(qū)動的分割

經(jīng)常使用的模型驅(qū)動分割有下面三種,第一種模型是基于動態(tài)輪廓的模型、第二種模型是組合優(yōu)化模型、第三種模型是目標幾何與統(tǒng)計模型。第一種是基于動態(tài)輪廓的模型用在進行分割目標的動態(tài)輪廓,因為其能量函數(shù)使用的是積分運算,有著很好的抗噪性能,對于目標的局部模糊也不敏感,所以其適用性很廣。但這種分割方法容易收斂到局部最優(yōu),因此要求初始輪廓應(yīng)盡可能靠近真實輪廓。通過組合優(yōu)化的方法進行分割問題的處理,是使用一目標函數(shù)綜合表示分割的相關(guān)要求以及約束,把分割變?yōu)槟繕撕瘮?shù)的優(yōu)化求解。因為目標函數(shù)多數(shù)情況下作為多變量函數(shù)存在的,因此可以通過使用隨機優(yōu)化的方法來實現(xiàn)。

(三)計算機視覺學(xué)圖像分割的半自動方法

通過對人工參與程度的分,我們可以得出圖像分割,主要有三種類型即:人工圖像分割、半自動圖像分割、自動圖像分割等。人工圖像分割指的是操作者使用鼠標,將分割區(qū)域的輪廓進行勾畫的方法,人工圖像分割的缺點是費時費力,而且很容易就會受到一些主觀因素的影響,并且人工圖像分割的可重復(fù)性較差。自動圖像分割不需要借助人機交互就能完成,但是也很難實現(xiàn)同一批圖像處理的滿意分割效果。半自動分割這種形式指的是將人機交互同自動分割結(jié)合在一起,半自動分割可以實現(xiàn)對不同圖像與處理需求的適應(yīng),并且可以大大降低計算過程的復(fù)雜性。在計算機技術(shù)不斷發(fā)展的背景下,計算速度和容量有了大幅度的提升,計算機圖像處理及視覺應(yīng)用取得了豐碩的成果。

三、計算機視覺技術(shù)的分析

(一)以模型為研究對象的處理方法

在以模型世界作為研究對象的視覺學(xué)研究過程中,以Roberts的開創(chuàng)性工作作為一種標志,在他的工作過程中,引進了三維物體與二維物體成像的關(guān)系,使用較為簡單的邊緣特征提取、組合線段等手段和方法。他對三維關(guān)系的分析只是按照簡單的邊緣線段的約束關(guān)系,缺乏對人類或其他動物視覺系統(tǒng)感知三維空間關(guān)系的充分考慮。但是早期的這些研究工作,對計算機視覺學(xué)的研究和發(fā)展發(fā)揮了良好的促進意義,但是對于較為復(fù)雜的景物就不能夠奏效。

(二)以計算理論為主體的視覺模型

隨著計算機視覺研究的不斷深入,在二十世紀七十年代,計算機視覺技術(shù)的研究,開始向著更為理性的階段發(fā)展,主要表現(xiàn)在:不同本征特性的恢復(fù),恢復(fù)的內(nèi)容有三維形狀恢復(fù)、運動恢復(fù)、光源恢復(fù)等等。研究的出發(fā)點是光學(xué)、生理學(xué)以及射影幾何的視角出發(fā),對成像及其逆等問題進行研究。在這個過程中,一些學(xué)者提出了以表示作為核心、通過算法作為中間轉(zhuǎn)換過程的視覺處理模型,例如:著名的計算機視覺學(xué)研究者Marr就提出了這些觀點,在他的理論里面,對表示的重要意義進行強調(diào),并且從不同層面上對信息處理問題進行了研究。

(三)計算機視覺的應(yīng)用研究

在現(xiàn)實生活和生產(chǎn)的過程中,計算機視覺主要應(yīng)用在照片資料、視頻資料處理上,例如:航空照片的處理、衛(wèi)星照片的編譯、醫(yī)學(xué)領(lǐng)域的輔診斷、移動機器人視覺導(dǎo)航等等。其中,工業(yè)機器人手眼系統(tǒng)的研發(fā),成為計算機視覺應(yīng)用最具代表性的成果之一。因為工業(yè)生產(chǎn)、施工等現(xiàn)場等因素具有一定的復(fù)雜性,這種環(huán)境下的光照、成像特點等等可以控制,這就使得計算機視覺的應(yīng)用更為簡單,對于系統(tǒng)的實際構(gòu)成有著很好的作用。移動機器人與工業(yè)機器人不同之處就是移動機器人具有一定的行為能力,這就需要研究者解決機器人的行為規(guī)劃問題。在移動機器人種類、智能化水平不斷提升的背景下,對視覺能力的要求也越來越高,這也使得計算機視覺有了更為廣闊的應(yīng)用前景。

四、結(jié)語

綜上所述,計算機視覺學(xué)作為人類科技發(fā)展和社會進步的一種學(xué)科體現(xiàn),在前進和發(fā)展的過程中,通過研究者和應(yīng)用者的不斷總結(jié)和探究,取得了豐碩的成果。在未來視覺技術(shù)發(fā)展的道路上,仍然有大量的工作需要進行研究。

參考文獻:

[1]韓祥波, 劉戰(zhàn)麗. 計算機圖像處理技術(shù)在農(nóng)產(chǎn)品檢測分級中的應(yīng)用[J]. 安徽農(nóng)業(yè)科學(xué) , 2013,(34)

[2]趙萍, 李永奎, 林靜, 白雪衛(wèi). 數(shù)字圖像處理技術(shù)在農(nóng)產(chǎn)品方面的應(yīng)用[J]. 農(nóng)機化研究 , 2012,(11)

第8篇:計算機視覺應(yīng)用范文

關(guān)鍵詞:計算機視覺圖像 精密測量 構(gòu)造幾何模型 信號源的接收

中圖分類號:TP391 文獻標識碼:A 文章編號:1009-3044(2013)05-1211-02

新型計算機視覺圖像精密測量是一種基于計算機程序設(shè)計以及圖像顯示的高精度的關(guān)鍵技術(shù),它廣泛用于測量的領(lǐng)域,對于測量的準確性有很好的保證。這種關(guān)鍵技術(shù)是幾何了光學(xué)的特性,發(fā)揮了圖像學(xué)的顯影性,把普通的測量技術(shù)瞬間提升到了一個新的高度。在這項關(guān)鍵技術(shù)中包含了物理學(xué)中光的效應(yīng),圖像中的傳感器以及計算機中的編程軟件,這還不完全,還有一些其他科學(xué)領(lǐng)域知識的輔助,可以說這項關(guān)鍵技術(shù)是一個非常有技術(shù)含量的技術(shù),很值得學(xué)者進行研究。

1 計算機視覺圖像精密測量的關(guān)鍵技術(shù)的具體形式

在以往的測量中,選擇的測量方式還是完全采用機械的形式,但是在使用了計算機視覺圖像精密測量后,完成了許多以往技術(shù)所不能達到的任務(wù)。在我們的研究中,計算機視覺圖像測量的原理是通過攝像機將被處理的對象采集進行影像采集,在多個控制點的數(shù)據(jù)采集完成后,系統(tǒng)會自動將這些圖像進行整合,得出相關(guān)的幾何多變參數(shù),再在計算機上以具體的數(shù)據(jù)顯示出來,以供技術(shù)人員使用參照。

在上面所說的攝像機并不是我們通常意義上生活中使用的攝像機。它是一種可視化較強,表針比較敏感的測試儀??梢詫⒁曈X中的二維形態(tài)通過顯影,記錄在機械的光譜儀上,再將這種的二維圖像做數(shù)學(xué)處理,有二階矩陣轉(zhuǎn)換為三階矩陣,通過播放儀呈現(xiàn)出三維的影像。這時的圖像變?yōu)榱Ⅲw化,更有層次感,效果上也有了明顯的變化,這是一種顯示方法。此外還有一種造價較高的儀器,我們不常使用,就是圖像提取器。同樣是采集控制點的數(shù)據(jù),將數(shù)據(jù)整合在系統(tǒng)之內(nèi),然后對于原始的圖像進行預(yù)處理,不再經(jīng)過有曝光這個程序,將圖像中關(guān)鍵點的坐標在整個內(nèi)部軸面上體現(xiàn)出來,提取數(shù)據(jù)幀數(shù),再運用機器的智能識別系統(tǒng),對控制點的坐標進行數(shù)據(jù)分析,自動生成圖形,這也可以用于精密測量。它的優(yōu)點就是使用上極其的方面,基本只要架立儀器和打開開關(guān),其他的工作機械系統(tǒng)都會自動的完成。使用的困難就是造價極其的高,不適合一般企業(yè)使用。在基于計算機視覺圖像測量中使用上的原理如下:

1) 計算出觀察控制點到計算機視覺圖像測量儀器的有效距離;

2) 得出觀察點到目標控制點之間的三維的運動幾何參數(shù);

3) 推斷出目標控制點在整個平面上的表面特征( 大多時候要求形成立體視覺);

4) 還通過觀察可以判斷出目標物體的幾何坐標方位。

在整個計算機視覺圖像精密測量的關(guān)鍵技術(shù)中最關(guān)鍵的元件就是壓力應(yīng)變電阻儀,這也是傳感器的一部分。壓力應(yīng)變電阻儀的使用方式是將應(yīng)力片粘貼在控制點位上,事先在物體表面打磨平整,清理干凈后,涂抹丙酮試劑,在液體完全風(fēng)干后就可以黏貼應(yīng)力片,通過導(dǎo)線的聯(lián)接,形成了一小段閉合的電路,時刻讓計算機視覺圖像系統(tǒng)可以感應(yīng)到并作跟蹤觀察。因受到來自不同方面諧波的影響后,應(yīng)力片會產(chǎn)生一定數(shù)值的電阻,在電路中,這些電阻會轉(zhuǎn)化為電流,視覺圖像系統(tǒng)接收到了電流后就會顯示在儀表盤上相應(yīng)的數(shù)據(jù),我們就可以根據(jù)儀表盤中的數(shù)據(jù)記錄測量中的數(shù)據(jù),很好的解決了原始機械在使用過程中大量的做無用功所消耗資源的現(xiàn)象。傳感器對每個應(yīng)點都進行動態(tài)的測量,將數(shù)據(jù)模轉(zhuǎn)換成現(xiàn)實中的圖像,精確的成像可以測算出控制點的位置,用計算機視覺圖像精密測量結(jié)合數(shù)據(jù)方面的相關(guān)的分析,得出施工中的可行性報告分析,減低了施工中的成本,將施工的預(yù)算控制在一個合理的范圍之內(nèi)。

當(dāng)無法觀察到控制點是,計算機視覺圖像精密測量可以通過接收信號或是相關(guān)的頻率波段來收集數(shù)據(jù),不會因為以往測量的環(huán)境不好,距離太遠,誤差太大的影響。

2 計算機視覺圖像精密測量的關(guān)鍵技術(shù)分析

在計算機視覺圖像精密測量的關(guān)鍵技術(shù)中解決了很多以往很難完成的任務(wù),但是在使用過程中還是發(fā)生了很多的問題。尤其在視覺圖像的選擇中,無法使用高幀數(shù)的圖片顯示,無法將計算機視覺圖像精密測量的關(guān)鍵技術(shù)的優(yōu)點發(fā)揮出來。我們就計算機視覺圖像精密測量的關(guān)鍵技術(shù)中常見的問題進行討論。

2.1 降低失誤的概率

在很多的數(shù)據(jù)誤差中,有一部分是出現(xiàn)在人為的因素上面。對于機器的不熟悉和操作中的疏忽都會在一定程度上對圖像的視覺感模擬帶來麻煩。對于網(wǎng)絡(luò)設(shè)備的配置上,要經(jīng)常性的學(xué)習(xí),將配置在可能的情況下設(shè)置的更加合理和使用,保證網(wǎng)絡(luò)連接系統(tǒng)的安全性。為防止更多因操作帶來的誤差,選用系統(tǒng)登入的制度,用戶在通過識別后進入系統(tǒng),在采集數(shù)據(jù)后,確定最終數(shù)據(jù)上又相關(guān)的再次確定的標識,系統(tǒng)對本身有的登錄服務(wù)器和路由器有相關(guān)的資料解釋,記錄好實用操作的時間,及時備份。

2.2 對于權(quán)限的控制

權(quán)限控制是針對測量關(guān)鍵所提出的一種安全保護措施,它是在使用計算機視覺圖像精密測量的關(guān)鍵技術(shù)中對用戶和用戶組賦予一定的權(quán)限,可以限制用戶和用戶組對目錄、子目錄、文件、打印機和其他共享資源的瀏覽和更改。圖像中的運行服務(wù)器在停止的情況下可以做出不應(yīng)答的操作指令,立刻關(guān)閉當(dāng)前不適用的界面,加快系統(tǒng)的運行速度,對于每天的日志文件實時監(jiān)控,一旦發(fā)現(xiàn)問題及時解決。對于數(shù)據(jù)終端的數(shù)據(jù)可采用可三維加密的方法,定時進行安全檢測等手段來進一步加強系統(tǒng)的安全性。如果通過了加密通道,系統(tǒng)可以將數(shù)據(jù)自動的保存和轉(zhuǎn)換為視圖模式,對于數(shù)據(jù)的審計和運行可以同時進行,這樣就可以很好的保證大地測量中的圖像數(shù)據(jù)安全,利用防護墻將采集中廢棄的數(shù)據(jù)革除在外,避免數(shù)值之間發(fā)生紊亂的現(xiàn)象,進一步改善計算機視覺圖像精密測量的關(guān)鍵技術(shù)。

2.3 開啟自動建立備份系統(tǒng)

計算機視覺圖像精密測量的關(guān)鍵技術(shù)的完善中會常遇到系統(tǒng)突然崩潰或是圖像受到嚴重干擾導(dǎo)致無法轉(zhuǎn)換的一系列情況,發(fā)生這種情況最大的可能性就是系統(tǒng)在處理多組數(shù)據(jù)后無法重新還原成進入界面。這時為保證圖片轉(zhuǎn)換成數(shù)字的系統(tǒng)數(shù)據(jù)不丟失,我們對系統(tǒng)進行備份。選定固定的磁盤保存數(shù)據(jù),定期將產(chǎn)生的數(shù)據(jù)(轉(zhuǎn)換前的圖像和轉(zhuǎn)換后的數(shù)值)導(dǎo)出,保證程序的正常運行。當(dāng)系統(tǒng)一旦發(fā)生錯誤,可以盡快的恢復(fù)數(shù)據(jù)的初始狀態(tài),為測量任務(wù)的完成爭取更多的時間。我們還要減少信號源周圍的干擾,定期的更新系統(tǒng)數(shù)據(jù)庫,保持數(shù)據(jù)采集的穩(wěn)定性,把攝像機記錄出的數(shù)據(jù)節(jié)點保存在相應(yīng)的技術(shù)圖紙上,用這樣的方式來知道測量工作。系統(tǒng)備份的數(shù)據(jù)還可以用于數(shù)據(jù)的對比,重復(fù)測量后得出的數(shù)據(jù),系統(tǒng)會自動也備份的數(shù)據(jù)進行比對,發(fā)現(xiàn)誤差值在規(guī)定以外,就會做出相應(yīng)的預(yù)警,這樣也能在工作中降低出現(xiàn)誤差的概率。

3 計算機視覺圖像精密測量的關(guān)鍵技術(shù)遇到的困難和使用前景

計算機視覺圖像精密測量的關(guān)鍵技術(shù)作為一種新興技術(shù)在使用時間上不過十幾年,其使用的程度已經(jīng)無法估算。正是因為它的簡單、使用、精度高以及自動化能力卓越的特點受到了測量單位的廣泛青睞。在測量方面的這些可靠性和穩(wěn)定性也是有目共睹的。在土木和機械測量的行業(yè)計算機視覺圖像精密測量的關(guān)鍵技術(shù)都會有廣泛和良好的使用,前景也是十分的廣闊。但是不容忽視該技術(shù)也有一些弊端。這項關(guān)鍵技術(shù)中涵蓋的學(xué)科非常的多,涉及到的知識也很全面,一旦出現(xiàn)了機器的故障,在維修上還是一個很大的問題,如何很好的解決計算機視覺圖像技術(shù)的相關(guān)核心問題就是當(dāng)下亟待解決的。

我們都知道,人的眼睛是可以受到吱聲的控制,想要完成觀測是十分簡單的,但是在計算機視覺圖像技術(shù)中,畢竟是采取攝像機取景的模式,在取得的點位有的時候不是特別的有代表性,很難將這些問題具體化、形象化。達不到我們設(shè)計時的初衷。所以在這些模型的構(gòu)建中和數(shù)據(jù)的轉(zhuǎn)換上必須有嚴格的規(guī)定和要求,切不可盲目的實施測量,每項技術(shù)操作都要按規(guī)程來實施。

上文中也談到了,計算機視覺圖像精密測量的關(guān)鍵技術(shù)中最主要的構(gòu)建是傳感器,一個合理的傳感器是體統(tǒng)的“心臟”,我們在儀器的操作中,不能時時刻刻對傳感器進行檢查,甚至這種高精度的元件在檢查上也并不是一件簡單的事情,通過不斷的研究,將傳感器的等級和使用方法上進行一定的創(chuàng)新也是一項科研任務(wù)。

4 結(jié)束語

在測量工程發(fā)展的今天,很多的測量技術(shù)已經(jīng)離不了計算機視覺圖像技術(shù)的輔助,該文中詳細的談到了基于計算機視覺圖像精密測量的關(guān)鍵技術(shù)方面的研究,對于之中可能出現(xiàn)的一些問題也提出了相應(yīng)的解決方案。測量工程中計算機視覺圖像精密測量的關(guān)鍵技術(shù)可以很好的解決和完善測量中遇到的一些問題,但是也暴露出了很多的問題。

將基于計算機視覺圖像精密測量的關(guān)鍵技術(shù)引入到測量工程中來,也是加強了工程建設(shè)的信息化水平??梢灶A(yù)見的是,在未來使用計算機視覺圖像技術(shù)建立的測量模型會得到更多、更好的應(yīng)用。但作為一個長期復(fù)雜的技術(shù)工程,在這個建設(shè)過程中定會有一些困難的出現(xiàn)。希望通過不斷的發(fā)現(xiàn)問題、總結(jié)經(jīng)驗,讓計算機視覺圖像精密測量的關(guān)鍵技術(shù)在測量中作用發(fā)揮的更好。

參考文獻:

[1] 湯劍,周芳芹,楊繼隆.計算機視覺圖像系統(tǒng)的技術(shù)改造[J].機電產(chǎn)品開發(fā)與創(chuàng)新周刊,2005,14(18):33-36.

[2] 段發(fā)階,等. 拔絲??仔斡嬎銠C視覺檢測技術(shù)[J]. 光電工程時報, 1996,23(13):189-190.

第9篇:計算機視覺應(yīng)用范文

【關(guān)鍵詞】Opencv;計算機視覺技術(shù);系統(tǒng);研究

隨著計算機技術(shù)的快速發(fā)展,計算機設(shè)備逐漸被應(yīng)用到社會生活的各個方面,尤其是在當(dāng)前計算機視覺技術(shù)和圖像處理技術(shù)快速發(fā)展的時期,各個科技領(lǐng)域中的計算機視覺技術(shù)已經(jīng)逐漸成熟。計算機視覺技術(shù)主要是利用計算機智能化來替代人眼,即對于客觀存在的三維立體化世界的理解和識別,整個實現(xiàn)過程均是以計算機技術(shù)作為基礎(chǔ)。隨著計算機視覺技術(shù)的不斷發(fā)展,現(xiàn)今其已逐漸成為了一門神經(jīng)生理學(xué)、計算機工程、信號學(xué)、物理學(xué)、應(yīng)用數(shù)學(xué)等綜合性學(xué)科。計算機視覺技術(shù)系統(tǒng)其在高性能計算機基礎(chǔ)之上來實現(xiàn)對大量數(shù)據(jù)的獲取,并且通過智能算法來對獲取數(shù)據(jù)進行處理,從而完成對數(shù)據(jù)集成。

一、視頻中運動物體檢測原理

對于視頻中的運動物體檢測主要分為兩中方法,其一為宏觀檢測法;其二為微觀檢測法。宏觀檢測法是對獲得的整幅圖像進行檢測,而微觀檢測法則是對所需要的區(qū)域進行圖像檢測。視覺技術(shù)在檢測運動物體的時候,首先對圖像進行采集,并對采集的信息數(shù)據(jù)進行預(yù)處理,將圖像進行分割,然后分別提取運動物體的影象,從而實現(xiàn)參數(shù)的更新。圖像采集過程中采用背景差分法,實現(xiàn)對背景圖像的提取,其通過一定算法采用人為手段獲取沒有背景的圖像。另外在進行運動物體檢測的時候還可以采用幀間差分法,其主要是實時獲取幀圖,然后實現(xiàn)一幀一幀圖像比值的比較,從而獲取具有差值的圖像。運動物體進行檢測的時候需連續(xù)獲取幀圖,將這些幀圖組合起來,其實就是物體的運動軌跡,然后同分割技術(shù)就能勾勒出物體的輪廓。隨著計算機視覺技術(shù)的不斷深入研究,發(fā)現(xiàn)此兩種方法單獨使用仍然存在的一些缺點,于是研究人員將二種檢測方法進行融合,形成一種綜合檢測方法。綜合檢測法將兩者檢測方法的優(yōu)勢進行了融合,并將其靈活的應(yīng)用到了生產(chǎn)和生活之中,取得了十分不錯的效用。

二、基于Opencv的計算機視覺技術(shù)探究

(一)基于Opencv的運動物體檢測

運動物體在進行檢測的時候,基于Opencv的檢測原理主要為:根據(jù)物體某項特定信息,例如,顏色、輪廓、性狀等,在復(fù)雜背景中利用這些特定的信息將物體分離出來。整個圖像的分離過程首先是進行視頻流捕捉,然后是進行視頻的格式轉(zhuǎn)換,再將圖像進行預(yù)處理,從而提取前景物體,減少環(huán)境因素對圖像處理的誤差,最后根據(jù)物體特征提取,并完成對運動物體的跟蹤。從圖像中提取所需的目標物體,其實質(zhì)就是對整個屋里輪廓進行檢測和分割,根據(jù)每個圖像的幀差異來進行提取。

(二)基于Opencv圖像預(yù)處理

視覺技術(shù)應(yīng)用于復(fù)雜的環(huán)境之中,由于存在著光照的變化,其場景中所出現(xiàn)的環(huán)境因素對視頻采集設(shè)備性能影響很大。環(huán)境因素會使得獲取的圖像信息的質(zhì)量降低,并且在圖像中無法避免的存在著噪點,這對于運動物體的檢測和圖像采集會造成很大的影響。當(dāng)獲取視頻幀圖像之后需對其數(shù)據(jù)進行預(yù)處理,通常有平滑度濾波處理、圖像填充、圖像背景更新等。

1.平滑度濾波處理

由于在進行視頻圖像采集的時候存在著噪點,那么我們就需要對其進行噪點處理,以求減小噪聲。濾波平滑度濾波處理,其具有線性和非線性兩種方式,其中線性方式進行處理器運算簡單、運算速度快,但是在進行處理之后的圖像都會呈現(xiàn)不清晰的情況。而非線性方式盡心給處理之后,雖然能夠很好的減小噪點,確保信號的局部特點,但是其運算的速度會較慢。

2.圖像填充

對于幀圖像進行處理,通常采用檢測邊緣填充法或者是腐蝕膨脹法來完成,其中填充法是指當(dāng)檢測出目標物體之后,利用邊緣檢測方法來對物體進行辨識,然后利用形態(tài)學(xué)的漫水填充法進行填充。圖像的腐蝕膨脹則主要是由于攝像機的性能等問題造成的。

3.實時背景更新

在進行圖像差分之前,需要對背景圖樣進行確定,并且需要對其進行初始化處理。以方便以后在進行檢測時候能夠?qū)崟r背景圖進行差分計算,只有這樣,才能夠獲得極佳的前景效果。在進行圖像差分時,首先需要根據(jù)指定法來確定第一幀背景的圖像,并將其指定為第一張背景圖片,然后在檢測過程中根據(jù)算法對背景實施更新。整個圖像在進行更新時,其主要的流程為:判斷并讀取圖像是否為第一幀;將Opencv處理的圖像轉(zhuǎn)化為單通道灰度值;將實時采集的圖像進行高斯平滑度處理,去除噪點;最后使用形態(tài)學(xué)濾波處理噪點。

(三)提取前景運動物體圖像

檢測運動物體的時候,只有在檢測流程中確保精確度,才能夠獲取滿意的前景跟蹤效果。此過程中主要分為兩個步驟,第一步為二值化圖像之后進行分割;第二步,圖像分析前處理,進行充分填充,確保前景圖的完整性。其中,前景圖的提取主要分為下面幾個步驟:首先對前景圖像和背景圖像進行差分,然后對差分的圖像進行二值化,再對背景中的前景圖像邊緣進行檢測,根據(jù)輪廓進行填充圖像。由于攝像頭存在于不同的場景和環(huán)境之中,不論是室外或者是室內(nèi)隨著場景的變化都會對圖像的采集產(chǎn)生影響。那么在前景圖中提取目標就需要在檢測系統(tǒng)中采用有效手段來完成背景實時更新。

閥值二值化分割法可以對檢測的物體進行前景和背景差圖分割,從而使目標物體能夠分離出圖像,且閥值分割先要確定每個像素的點是否處于灰度范圍值之內(nèi)。將圖像中的像素灰度與確定的閥值進行比較,其結(jié)果解釋所有像素點分為2類,一類像素的灰度小于閥值,另外一類就是大于閥值。閥值二值化分割時,確定分割的閥值T,然后分割圖像。選取合適的閥值進行分割,可以有效的減少光照因素影響,常用的動態(tài)閥值主要有直方圖來法與最大類方差法這另種分割方法。

三、計算機視覺三維技術(shù)

計算機視覺技術(shù)的核心為分割問題、運動分析、3D立體場景重構(gòu)等,立體視覺主要是從多幅圖像的參照中獲取目標物體的三維幾何信息。計算機視覺所模擬出的3D立體畫面只需要攝像機從不同的角度同一時間針進行圖像捕獲,將2D信息進行3D重構(gòu),進而將計算機程序重建于真實的三維場景之中,以恢復(fù)物體的真實空間信息。

(一)視覺系統(tǒng)

視覺系統(tǒng)捕獲圖像的過程,實則可以看成為對大量信息進行處理過程,整個系統(tǒng)處理可以分為三個層次,其一,理論層次;其二,描述層次;其三,實現(xiàn)層次。在攝像機視覺系統(tǒng)之中,輸入的是2D圖像,但是輸出為3D信息,而這就可以實現(xiàn)對圖像的位置、距離等信息的如實描述。視覺系統(tǒng)分為三個進階層次,第一階段為基礎(chǔ)框架;第二階段為2.5D表達;第三階段為三維階段。在第二階段中實現(xiàn)的2.5D表達,其原理是將不完整的3D圖像信息進行表達,即以一個點為坐標,從此點看去某一些物體的部分被遮擋。第三階段的三維階段,則是人眼觀察之后可以從不同的角度來觀察物體的整體框架,從而實現(xiàn)了將2.5D圖像信息的疊加重合運算,進一步處理之后得到了3D圖像。

(二)雙目視覺

人們從不同角度觀看同一時間內(nèi)的同一物體的時候,可以利用算法測量物體間的距離。此法被稱為雙目立體感覺,其依據(jù)的原理是視覺差原理,利用兩臺攝像機或者一臺攝像機,對兩幅不同的圖像進行不同角度觀察,并且對其觀察的數(shù)據(jù)進行對比分析。實現(xiàn)雙目立體視覺與平面視覺圖像獲取,其主要的步驟為:

(1)圖像獲取

從兩臺不同的攝像機,捕獲幀圖像,由于環(huán)境因素會造成圖像差異困難。為了更好的跟蹤目標、檢測,當(dāng)捕獲圖像之后,需要對圖像進行預(yù)處理。

(2)攝像標定方式

獲得真實坐標系中的場景點中的與平面成像點占比見的對應(yīng)關(guān)系,借用三維立體空間中的三維坐標,標定之后確定攝像機的位置以及屬性參數(shù),并建立起成像的模型。

(3)特征提取方式

所謂的特征提取方式主要是為了提升檢測、跟蹤目標的準確性,需要對目標物體進行特征提取,從而實現(xiàn)對圖像分割提取。

(4)深度計算

深度信息主要是根據(jù)幾何光學(xué)原理,從三維世界進行客觀分析,因為距離會產(chǎn)生不同的位置,會使得成像位置與兩眼視網(wǎng)膜上有所不同。簡單來說,客觀景物的深度可以反映出雙目的視覺差,而利用視覺差的信息結(jié)合三角原理進行計算,可呈現(xiàn)出深度的圖像信息。

(三)攝像機模型

攝像機在標定過程中確定了其建立的基礎(chǔ)為攝像機的模型,攝像機模型在標定過程中關(guān)系到三個不同坐標系的轉(zhuǎn)換,分別為2D圖像平面坐標系、攝像機自身坐標系以及真實的世界坐標系。攝像機在攝像的時候起本質(zhì)是2D圖像坐標轉(zhuǎn)換,首先要定義攝像機的自身坐標系,將坐標系的原點設(shè)置為光心,X、Y、Z成立三維坐標系。其次則是建立平面的圖像坐標系,用以透視模型表示,其原點也在廣心的位置,稱之為主點。實際應(yīng)用中,物理的距離光心的位置d≠f焦距,而且會遠遠大于焦距,為了解決如此問題就提出了平面概念。在光軸z上設(shè)置一個虛擬的圖像平面,然后在此位置于平面關(guān)于光心對稱。接著,在設(shè)置的虛擬2D坐標系中,光軸和原點重合,并且攝像機與垂直平面的垂直方向相同,真實圖像上的點影射到攝像機坐標系。

(四)3D重構(gòu)算法

視頻流的采集,主要是采用Kinect設(shè)備、彩色攝像頭、紅外發(fā)射攝像頭、紅外接收攝像頭。使用微軟提供API控制Kinect設(shè)備,在操作之前需調(diào)用NUI初始化函數(shù),將函數(shù)的參數(shù)設(shè)置為用戶信息深度圖數(shù)據(jù)、彩色圖數(shù)據(jù)、骨骼追蹤圖數(shù)據(jù)、深度圖數(shù)據(jù)。上述的視頻流的打開方式不同,既可以是一種打開方式,也可以是多種打開方式,尤其在進行Kinect傳輸數(shù)據(jù)處理的時候,需遵循三條步驟的運行管線。此三條管線分別為:第一條為處理彩色和深度數(shù)據(jù),第二條為根據(jù)用索引添加顏色信息,并將其放入到深度圖之中,第三條為骨骼追蹤數(shù)據(jù)。

四、總結(jié)

隨著計算技術(shù)的快速發(fā)展,視覺技術(shù)逐漸被廣泛的應(yīng)用于我們?nèi)粘5难芯恐?。本文通過對視覺技術(shù)的相關(guān)問題進行分析,探究了圖像處理、分割、前景提取、運動物體觀測以及重構(gòu)3D圖等問題,為實現(xiàn)視覺技術(shù)更加深入研究做出了相應(yīng)的貢獻;為廣大參與計算機視覺技術(shù)研究同仁提供一個研究的思路,為實現(xiàn)視覺技術(shù)的騰飛貢獻薄力。

參考文獻

[1]張???基于Opencv的人手識別與跟蹤定位技術(shù)研究與實現(xiàn)[D].云南大學(xué),2013.